By Topic

A Novel Electronic-Throttle-Valve Controller Based on Approximate Model Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaofang Yuan ; Coll. of Electr. & Inf. Eng., Hunan Univ., Changsha ; Yaonan Wang

An electronic throttle is a dc servo drive which positions the throttle plate, thus providing drive-by-wire control of engine torque. In this paper, an approximate model-based robust nonlinear control (AMRNC) strategy is proposed for electronic throttle valve. The AMRNC includes two main parts: approximate model controller and uncertainty compensation. The approximate model controller, utilized as a feedforward controller, is developed from a linearization of the input-output model of the plant using Taylor expansion technique, and it is implemented using fuzzy system modeling. Moreover, a robustness filter in the feedback structure is employed as uncertainty compensation. The robust stability is established by Lyapunov stability theorem. A simulation and an experiment are provided to verify the effectiveness of the AMRNC strategy.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:56 ,  Issue: 3 )