Cart (Loading....) | Create Account
Close category search window
 

Solid Oxide Fuel Cell Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gebregergis, A. ; Dept. of Electr. & Comput. Eng., Clarkson Univ., Potsdam, NY ; Pillay, P. ; Bhattacharyya, D. ; Rengaswemy, R.

This paper discusses the modeling of a solid oxide fuel cell using both lumped and distributed modeling approaches. In particular, the focus of this paper is on the development of a computationally efficient lumped-parameter model for real-time emulation and control. The performance of this model is compared with a detailed distributed model and experimental results. The fundamental relations that govern a fuel cell operation are utilized in both approaches. However, the partial pressure of the species (fuel, air, and water) in the distributed model is assumed to vary through the length of the fuel cell. The lumped model approach uses the partial pressure of the species at the exit point of the fuel cell. The partial pressure of the species is represented by an equivalent RC circuit in the lumped model.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 1 )

Date of Publication:

Jan. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.