By Topic

Full-Wave Modal Dispersion Analysis and Broadside Optimization for a Class of Microstrip CRLH Leaky-Wave Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Simone Paulotto ; Dept. of Electron. Eng., "La Sapienza" Univ. of Rome, Rome ; Paolo Baccarelli ; Fabrizio Frezza ; David R. Jackson

In this paper, a planar microstrip composite right/left-handed leaky-wave antenna is analyzed and designed as an infinite 1-D periodic microstrip leaky-wave antenna. A parametric study, based on a full-wave numerical modal approach that analyzes a unit cell using a periodic layered-medium Green's function, is shown to be an efficient approach to accurately design the structure, completely eliminating open-stopband effects and achieving an almost constant radiation efficiency when the beam is scanned through broadside. Results obtained by the proposed approach are compared with those obtained by means of both an artificial transmission-line analysis and a Bloch-wave analysis, which use the full-wave simulation of a finite-length structure. The balanced condition is interpreted in terms of the behavior of the phase and attenuation constants relevant to the radiating harmonic. Furthermore, it is shown how radiation at broadside is guaranteed by the presence of two radiating elements (one series and one shunt) within the equivalent circuit of the unit cell. The effectiveness of the analysis is demonstrated through the design of a finite-length antenna excited by a source at one end.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:56 ,  Issue: 12 )