By Topic

A Low-Loss Substrate-Independent Approach for 60-GHz Transceiver Front-End Integration Using Micromachining Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents a low-loss, substrate-independent approach to integrate transceiver front-ends for 60-GHz wireless applications. Dielectric loss is eliminated by using polymer and bulk silicon micromachining technologies to create a cavity-based duplexer and a horn antenna in the air, above the substrate. A coplanar waveguide input is used for easy integration of the low-noise amplifier and power amplifier of the receiver and transmitter, respectively, with the micromachined passive module. A prototype is designed, fabricated, and characterized, with the transmit band (TX) set between 58.7-59.5 GHz and the receive band (RX) as 60.6-61.4 GHz. The proposed method offers an easy integration of both planar components and 3-D integrated modules on top of the substrate.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:56 ,  Issue: 12 )