By Topic

Application of NSGA-II Algorithm to Generation Expansion Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kannan, S. ; Electr. & Electron. Eng. Dept., Arulmigu Kalasalingam Coll. of Eng., Anand Nagar ; Baskar, S. ; McCalley, J.D. ; Murugan, P.

This paper describes use of a multiobjective optimization method, elitist nondominated sorting genetic algorithm version II (NSGA-II), to the generation expansion planning (GEP) problem. The proposed model provides for decision maker choice from among the different trade-off solutions. Two different problem formulations are considered. In one formulation, the first objective is to minimize cost; the second objective is to minimize sum of normalized constraint violations. In the other formulation, the first objective is to minimize investment cost; the second objective is to minimize outage cost (or maximize reliability). Virtual mapping procedure is introduced to improve the performance of NSGA-II. The GEP problem considered is a test system for a six-year planning horizon having five types of candidate units. The results are compared and validated.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 1 )