Cart (Loading....) | Create Account
Close category search window
 

Tighter Approximated MILP Formulations for Unit Commitment Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Frangioni, A. ; Dipt. di Inf., Univ. di Pisa, Pisa ; Gentile, C. ; Lacalandra, F.

The short-term unit commitment (UC) problem in hydrothermal power generation is a large-scale, mixed-integer nonlinear program, which is difficult to solve efficiently, especially for large-scale instances. It is possible to approximate the nonlinear objective function of the problem by means of piecewise-linear functions, so that UC can be approximated by an mixed-integer linear program (MILP); applying the available efficient general-purpose MILP solvers to the resulting formulations, good quality solutions can be obtained in a relatively short amount of time. We build on this approach, presenting a novel way to approximating the nonlinear objective function based on a recently developed class of valid inequalities for the problem, called ldquoperspective cuts.rdquo At least for many realistic instances of a general basic formulation of UC, an MILP-based heuristic obtains comparable or slightly better solutions in less time when employing the new approach rather than the standard piecewise linearizations, while being not more difficult to implement and use. Furthermore, ldquodynamicrdquo formulations, whereby the approximation is iteratively improved, provide even better results if the approximation is appropriately controlled.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 1 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.