By Topic

Experimental investigation of the combustive sound source

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wilson, P.S. ; Appl. Res. Lab., Texas Univ., Austin, TX ; Ellzey, J.L. ; Muir, T.G.

In this paper, we describe a unique low frequency underwater sound source called the combustive sound source (CSS). In this device, a combustible gas mixture is captured in a combustion chamber and ignited with a spark. The ensuing combustion produces expanding gases which in turn produce high intensity, low frequency acoustic pulses. With high-speed motion pictures of the CSS event, we relate the motion of the bubble to the acoustic waveform. We also compare the measured first bubble period in the CSS pressure signature with the predictions of the Rayleigh-Willis equation, including the dependence of the radiated acoustic waveform on the volume and depth of the bubble. Measurements of the first bubble period agree with Rayleigh-Willis theory in trend, but not in absolute value. In addition, we discuss the variation of the acoustic output with the fuel/oxygen mixture. Finally, several other factors that affect the acoustic output of CSS are discussed. These include the shape of the CSS combustion chamber, the type of oxidizer and fuel, and the ignition source

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:20 ,  Issue: 4 )