Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A compact model for undoped symmetric double-gate MOSFETs with Schottky-barrier source/drain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhu, G.J. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Zhou, X. ; Lee, T.S. ; Ang, L.K.
more authors

A physics-based compact model for undoped symmetric double-gate MOSFETs with Schottky-barrier source and drain is formulated based on the quasi-2D surface-potential solution and Miller-Good tunneling method. Essential physics due to the screening of the gate field by free carriers, which is absent in previous literatures, is included in the model. Electron and hole transports for all positive/negative gate/drain biases are modeled within the single-piece core model that scales with device geometry, body/oxide thickness, SB workfunction, and source/drain contact size. Unlike 2D numerical simulation, the proposed compact model, which is simple and fast yet accurate, is circuit-compatible and suitable for future VLSI circuit design using SB-MOS devices. The proposed modeling methodology can be easily extended to handle other promising devices such as SB silicon nanowires.

Published in:

Solid-State Device Research Conference, 2008. ESSDERC 2008. 38th European

Date of Conference:

15-19 Sept. 2008