By Topic

SRAM dynamic stability: Theory, variability and analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Dong ; Dept. of ECE, Texas A&M Univ., College Station, TX ; Peng Li ; Huang, G.M.

Technology scaling in sub-100 nm regime has significantly shrunk the SRAM stability margins in data retention, read and write operations. Conventional static noise margins (SNMs) are unable to capture nonlinear cell dynamics and become inappropriate for state-of-the-art SRAMs with shrinking access time and/or advanced dynamic read-write-assist circuits. Using the insights gained from rigorous nonlinear system theory, we define the much needed SRAM dynamic noise margins (DNMs). The newly defined DNMs not only capture key SRAM nonlinear dynamical characteristics but also provide valuable design insights. Furthermore, we show how system theory can be exploited to develop CAD algorithms that can analyze SRAM dynamic stability characteristics three orders of magnitude faster than a brute-force approach while maintaining SPICE-level accuracy. We also demonstrate a parametric dynamic stability analysis approach suitable for low-probability cell failures, leading to three orders of magnitude runtime speedup for yield analysis under high-sigma parameter variations.

Published in:

Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International Conference on

Date of Conference:

10-13 Nov. 2008