By Topic

Adjustment-based modeling for Statistical Static Timing Analysis with high dimension of variability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin Xie ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin, Madison, WI ; Davoodi, A. ; Jun Zhang ; Tai-Hsuan Wu

This paper presents an adjustment-based modeling framework for statistical static timing analysis (SSTA) when the dimension of parameter variability is high. Instead of building a complex model between the circuit timing and parameter variability, we build a model which adjusts an approximate variation-aware timing into an accurate one. The intuition is that it is simpler to build a model which adjusts an approximate estimate into an accurate one. It is also more efficient to obtain an approximate circuit timing model. The combination of these two observations makes the use of an adjustment-based model a good choice for SSTA with high dimension of parameter variability. To build the adjustment model, we use a simulation-based approach, which is based on Gaussian Process. Combined with intelligent sampling, we show that an adjustment-based model can more effectively capture the nonlinearity of the circuit timing with respect to parameter variability compared to polynomial modeling. We also show that with only 200 samples of the circuit timing and 42 independent parameter variations, adjustment-based modeling obtains higher accuracy than direct SSTA using quadratic modeling.

Published in:

Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International Conference on

Date of Conference:

10-13 Nov. 2008