Cart (Loading....) | Create Account
Close category search window
 

Efficient Speech Emotion Recognition Based on Multisurface Proximal Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chengfu Yang ; Sch. of Comput. Sci. & Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu ; Xiaorong Pu ; Xiaobin Wang

An efficient speech emotion recognition method based on Multisurface Proximal Support Vector Machine (MPSVM) is presented in this paper. Seven primary human emotions including anger, boredom, disgust, fear/anxiety, happiness, neutral, sadness are investigated using cepstral and spectral features. These novel and robust acoustic features and the multisurface proximal support vector machine classifier based on the Gaussian Mixture Models (GMM) are proposed to yield more correct result. In order to get the normal features in speech emotion space, the corpus of Berlin database of emotional speech is used to train the system, and a simple speech emotion corpus in English, French, Slovenian and Spanish recorded by 2 non-professional speakers are used to test the classifiers. The results achieved by MPSVM are compared by that of the standard support vector machine (SSVM) classifier. The more efficient and more accurate results are achieved.

Published in:

Robotics, Automation and Mechatronics, 2008 IEEE Conference on

Date of Conference:

21-24 Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.