Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

YAP multi-crystal gamma camera prototype

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
8 Author(s)
Blazek, K. ; Preciosa Company, Turnov, Czechoslovakia ; De Notaristefani, F. ; Maly, P. ; Pani, R.
more authors

The Anger camera principle has shown a practical limit of a few millimeters spatial resolution. To overcome this limit, a new gamma camera prototype has been developed, based on a position-sensitive photomultiplier tube (PSPMT) coupled with a new scintillation crystal. The Hamamatsu R2486 PSPMT is a 76-mm diameter photomultiplier tube in which the electrons produced in the conventional bi-alkali photocathode are multiplied by proximity mesh dynodes and form a charge cloud around the original coordinates of the light photon striking the photocathode. A crossed wire anode array collects the charge and detects the original position. The intrinsic spatial resolution of PSPMT is better than 0.3 mm. The scintillation crystal consists of yttrium aluminum perovskit (YAP:Ce or YAlO3:Ce). This crystal has a light efficiency of about 38% relative to NaI, no hygroscopicity and a good gamma radiation absorption. To match the characteristics of the PSPMT, a special crystal assembly was produced by the Preciosa Company, consisting of a bundle of YAP:Ce pillars where single crystals have 0.6×0.6 mm2 cross section and 3 mm to 18 mm length. Preliminary results from such gamma camera prototypes show spatial resolution values ranging between 0.7 mm and 1 mm with an intrinsic detection efficiency of 37÷65% for 140 keV gamma energy

Published in:

Nuclear Science, IEEE Transactions on  (Volume:42 ,  Issue: 5 )