By Topic

RF front end for a 4.1 Tesla clinical NMR spectrometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. T. Vaughan ; Center for Nucl. Imaging Res., Alabama Univ., Birmingham, AL, USA ; D. N. Haupt ; P. J. Noa ; J. M. Vaughn
more authors

With increased signal-to-noise, spatial, temporal, and spectral resolution, blood oxygenation level contrast, and other benefits of high field NMR, 4T NMR systems enhance the potential for using multinuclear imaging and spectroscopy for medical science and clinical diagnostics. A new NMR spectrometer is needed however. The magnet aside, the key difference between present clinical or animal systems, and 4T+ clinical systems is the RF front end. Including the power amplifier, transmit/receive (T/R) switch, preamplifier, and RF coils, the front end is required to operate at power levels, bandwidths, and circuit lengths unique in the NMR field. New technology has been developed for these components to optimize the performance of the spectrometer. To cover broader spectral bandwidths, and to compensate for chemical shift dispersion error, two 15 kW solid state amplifiers have been developed for implementation on a “home-built” 4.1T clinical system. A stripline transformed, nonmagnetic, tuned GaAsFET preamp has been built for achieving high gain and low noise at the RF coil. A nonmagnetic dual quadrature hybrid-PIN diode T/R switch was developed to isolate the RF power amplifier from the receiver. New high frequency coils have made use of tuned cavities and transmission lines

Published in:

IEEE Transactions on Nuclear Science  (Volume:42 ,  Issue: 4 )