By Topic

Understanding syndromic hotspots - a visual analytics approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

When analyzing syndromic surveillance data, health care officials look for areas with unusually high cases of syndromes. Unfortunately, many outbreaks are difficult to detect because their signal is obscured by the statistical noise. Consequently, many detection algorithms have a high false positive rate. While many false alerts can be easily filtered by trained epidemiologists, others require health officials to drill down into the data, analyzing specific segments of the population and historical trends over time and space. Furthermore, the ability to accurately recognize meaningful patterns in the data becomes more challenging as these data sources increase in volume and complexity. To facilitate more accurate and efficient event detection, we have created a visual analytics tool that provides analysts with linked geo-spatiotemporal and statistical analytic views. We model syndromic hotspots by applying a kernel density estimation on the population sample. When an analyst selects a syndromic hotspot, temporal statistical graphs of the hotspot are created. Similarly, regions in the statistical plots may be selected to generate geospatial features specific to the current time period. Demographic filtering can then be combined to determine if certain populations are more affected than others. These tools allow analysts to perform real-time hypothesis testing and evaluation.

Published in:

Visual Analytics Science and Technology, 2008. VAST '08. IEEE Symposium on

Date of Conference:

19-24 Oct. 2008