By Topic

Visual cluster analysis of trajectory data with interactive Kohonen Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schreck, T. ; Interactive Graphics Syst. Group, TU Darmstadt, Darmstadt ; Bernard, J. ; Tekusova, T. ; Kohlhammer, J.

Visual-interactive cluster analysis provides valuable tools for effectively analyzing large and complex data sets. Due to desirable properties and an inherent predisposition for visualization, the Kohonen Feature Map (or self-organizing map, or SOM) algorithm is among the most popular and widely used visual clustering techniques. However, the unsupervised nature of the algorithm may be disadvantageous in certain applications. Depending on initialization and data characteristics, cluster maps (cluster layouts) may emerge that do not comply with user preferences, expectations, or the application context. Considering SOM-based analysis of trajectory data, we propose a comprehensive visual-interactive monitoring and control framework extending the basic SOM algorithm. The framework implements the general Visual Analytics idea to effectively combine automatic data analysis with human expert supervision. It provides simple, yet effective facilities for visually monitoring and interactively controlling the trajectory clustering process at arbitrary levels of detail. The approach allows the user to leverage existing domain knowledge and user preferences, arriving at improved cluster maps. We apply the framework on a trajectory clustering problem, demonstrating its potential in combining both unsupervised (machine) and supervised (human expert) processing, in producing appropriate cluster results.

Published in:

Visual Analytics Science and Technology, 2008. VAST '08. IEEE Symposium on

Date of Conference:

19-24 Oct. 2008