By Topic

Valved routing: efficient flow control for adaptive nonminimal routing in interconnection networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liao, W.-K. ; Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA ; Chung-Ta King

Adaptive nonminimal routing (or misrouting) may move messages away from their destinations to temporarily cope with the dynamic load in an interconnection network. In most cases, misrouting is more powerful and flexible than minimal routing, especially under nonuniform load distribution. However, to take advantage of its misrouting, we have to avoid deadlock, livelock, and starvation in the network and to maintain the network performance across all levels of loading. In this paper, we propose a new flow control scheme for misrouting, called valved routing. Valved routing controls message injection and transmission through logical valves associated with the router ports. Designing routers using valved routing requires a proper choice of design parameters. We will discuss how to find the range of feasible design parameters. Issues in implementing routers using valved routing will also be addressed. We have conducted extensive simulations to compare the performance of routers with and without valved routing. Our simulation results show that valved routing has promising performance advantages, at light as well as heavy network load. Compared with the voluntary misrouting, valved routing performs better in network throughput without sacrificing the latency

Published in:

Computers, IEEE Transactions on  (Volume:44 ,  Issue: 10 )