Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

The application of FDTD in hybrid methods for cavity scattering analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tse-Tong Chia ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Burkholder, R.J. ; Lee, R.

In a previous paper (see ibid., vol.41, p.1560-1569, no.11, 1993), we presented the hybrid ray-FDTD method for analyzing the electromagnetic scattering from two-dimensional cavities with complex terminations. In this paper, we present three hybrid methods for analyzing the scattering from three-dimensional (3-D) inlet cavities. In these hybrid methods, the finite-difference time-domain (FDTD) method is used to determine the reflection matrix associated with the termination. Modal analysis, physical optics (PO), or rays are used to analyze the remaining front section of the cavity. Representative results are presented

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:43 ,  Issue: 10 )