By Topic

Determination of NEMA Design Induction Motor Parameters From Manufacturer Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Haque, M.H. ; Center for Smart Energy Syst., Nanyang Technol. Univ., Singapore

This paper proposes a simple method of determining the equivalent circuit parameters of National Electrical Manufacturers Association (NEMA) design A and B types of induction motors from standard manufacturer data such as rated output power, starting torque, breakdown torque, and efficiency and power factor at rated output power. A set of nonlinear equations for various quantities is first derived from the equivalent circuit with a single-cage rotor model, and then, equate to the corresponding actual values supplied by the manufacturer. These equations are then solved using a least-squares based algorithm to determine the motor parameters. The rotor parameters are considered as slip dependent to predict the starting torque of the motor and that requires refining the breakdown torque equation as well as the slip at which the breakdown torque occurs. The proposed method of determining the motor parameters is then tested on more than 300 large-size HV induction motors. The effectiveness of the proposed method is evaluated by calculating various external quantities of the motors through the estimated parameters and comparing them with the corresponding actual values supplied by the manufacturer.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 4 )