By Topic

Reverse engineering time series of gene expression data using Dynamic Bayesian networks and covariance matrix adaptation evolution strategy with explicit memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maryam Salehi ; School of Computing, Queen¿s University, Kingston, ON, Canada ; Alan Ableson ; Parvin Mousavi

Dynamic Bayesian networks are of particular interest to reverse engineering of gene regulatory networks from temporal transcriptional data. However, the problem of learning the structure of these networks is quite challenging. This is mainly due to the high dimensionality of the search space that makes exhaustive methods for structure learning not practical. Consequently, heuristic techniques such as Hill Climbing are used for DBN structure learning. Hill Climbing is not an efficient method for this purpose as it is prone to get trapped in local optima and the learned network is not very accurate.

Published in:

Computational Intelligence in Bioinformatics and Computational Biology, 2008. CIBCB '08. IEEE Symposium on

Date of Conference:

15-17 Sept. 2008