By Topic

Distributed Downlink Beamforming With Cooperative Base Stations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Boon Loong Ng ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC ; Jamie S. Evans ; Stephen V. Hanly ; Defne Aktas

In this paper, we consider multicell processing on the downlink of a cellular network to accomplish ldquomacrodiversityrdquo transmit beamforming. The particular downlink beamformer structure we consider allows a recasting of the downlink beamforming problem as a virtual linear mean square error (LMMSE) estimation problem. We exploit the structure of the channel and develop distributed beamforming algorithms using local message passing between neighboring base stations. For 1-D networks, we use the Kalman smoothing framework to obtain a forward-backward beamforming algorithm. We also propose a limited extent version of this algorithm that shows that the delay need not grow with the size of the network in practice. For 2-D cellular networks, we remodel the network as a factor graph and present a distributed beamforming algorithm based on the sum-product algorithm. Despite the presence of loops in the factor graph, the algorithm produces optimal results if convergence occurs.

Published in:

IEEE Transactions on Information Theory  (Volume:54 ,  Issue: 12 )