By Topic

Scanning and Sequential Decision Making for Multidimensional Data—Part II: The Noisy Case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Asaf Cohen ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA ; Tsachy Weissman ; Neri Merhav

We consider the problem of sequential decision making for random fields corrupted by noise. In this scenario, the decision maker observes a noisy version of the data, yet judged with respect to the clean data. In particular, we first consider the problem of scanning and sequentially filtering noisy random fields. In this case, the sequential filter is given the freedom to choose the path over which it traverses the random field (e.g., noisy image or video sequence), thus it is natural to ask what is the best achievable performance and how sensitive this performance is to the choice of the scan. We formally define the problem of scanning and filtering, derive a bound on the best achievable performance, and quantify the excess loss occurring when nonoptimal scanners are used, compared to optimal scanning and filtering. We then discuss the problem of scanning and prediction for noisy random fields. This setting is a natural model for applications such as restoration and coding of noisy images. We formally define the problem of scanning and prediction of a noisy multidimensional array and relate the optimal performance to the clean scandictability defined by Merhav and Weissman. Moreover, bounds on the excess loss due to suboptimal scans are derived, and a universal prediction algorithm is suggested. This paper is the second part of a two-part paper. The first paper dealt with scanning and sequential decision making on noiseless data arrays.

Published in:

IEEE Transactions on Information Theory  (Volume:54 ,  Issue: 12 )