By Topic

Fast and scalable pattern matching for content filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dharmapurikar, S. ; Washington Univ. in St. Louis, St. Louis, MO ; Lockwood, J.

High-speed packet content inspection and filtering devices rely on a fast multi-pattern matching algorithm which is used to detect predefined keywords or signatures in the packets. Multi-pattern matching is known to require intensive memory accesses and is often a performance bottleneck. Hence specialized hardware-accelerated algorithms are being developed for line-speed packet processing. While several pattern matching algorithms have already been developed for such applications, we find that most of them suffer from scalability issues. To support a large number of patterns, the throughput is compromised or vice versa. We present a hardware-implementable pattern matching algorithm for content filtering applications, which is scalable in terms of speed, the number of patterns and the pattern length. We modify the classic Aho-Corasick algorithm to consider multiple characters at a time for higher throughput. Furthermore, we suppress a large fraction of memory accesses by using Bloom filters implemented with a small amount of on-chip memory. The resulting algorithm can support matching of several thousands of patterns at more than 10 Gbps with the help of a less than 50 KBytes of embedded memory and a few megabytes of external SRAM. We demonstrate the merit of our algorithm through theoretical analysis and simulations performed on Snort's string set.

Published in:

Architecture for networking and communications systems, 2005. ANCS 2005. Symposium on

Date of Conference:

26-28 Oct. 2005