By Topic

Two-Dimensional Electron Model for a Hybrid Code of a Two-Stage Hall Thruster

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Escobar, D. ; Eur. Space Oper. Center, Eur. Space Agency, Darmstadt ; Ahedo, E.

An axisymmetric model for magnetized electrons in a Hall thruster, to be used in combination with a particle-in-cell model for heavy species, is presented. The main innovation is the admission of exchanges of electric current at the chamber walls, thus making the model applicable to a larger variety of Hall thrusters. The model is fully 2-D for regular magnetic topologies. It combines an equilibrium law for collisionless dynamics along the direction parallel to the magnetic field with drift-fluid equations for perpendicular transport. These are coupled to sheath models for the interaction with different types of walls. The derivation of a parabolic differential equation for the temperature and the full computation of the electric field work improves clarity and accuracy over previous models. Simulations of a Hall thruster with an intermediate current-driving electrode, operating in emission, floating, and collection modes are presented. Enhancement of thrust efficiency is found for the electrode working in the high-emission mode if the magnetic field strength is adjusted appropriately. The two-stage floating mode presents lower wall losses, lower plume divergence, and higher efficiency than the equivalent one-stage configuration.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 5 )