By Topic

Design of a small area and low power CMOS D/A converter based on the Alpha-Power Law MOSFET model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Daeyoon Kim ; Dept. of Semicond. Sci., Dongguk Univ., Seoul ; Sanghoon Hwang ; Heewon Kang ; Seungjin Yeo
more authors

While the CMOS analog circuits can be designed with the minimum-gate-length of the fabrication process in the Alpha-Power Law MOSFET model, the length of a MOSFET gate has been chosen to be a larger scale than the minimum-gate-length in the conventional Shockleypsilas square model. In this paper, we describe a 6-b 100MSPS CMOS current steering Digital-to-Analog Converter (DAC) with the Alpha-Power Law model. In order to improve the matching characteristics of the DAC current cell, moreover, we introduce a new and unique adaptive-control-switch (ACS) and a common current cell layout technique using a tournament algorithm. The prototype circuit has been fabricated with a Samsung 1.8 V, 0.18 mum, 1-poly, 5-metal CMOS technology. It occupies 0.52 mm2 of silicon area with 15.8 mW power consumption. The fabricated chip area and the measured power dissipation are reduced by 30% and 25% over conventional ones, respectively.

Published in:

Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on

Date of Conference:

Aug. 31 2008-Sept. 3 2008