By Topic

Theoretical and Experimental Considerations for Bacteria Sterilization Using a Novel Multielectrode Dielectric-Barrier Discharge System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Edward Forde ; Dept. of Electron. & Comput. Eng., Limerick Univ., Limerick ; Ivor Guiney ; Khalil Arshak ; Catherine Adley
more authors

A novel multielectrode dielectric-barrier discharge plasma system operating at atmospheric pressure in air, which has improved microbial inactivation properties is described. The interaction of high-voltage components necessary to create the discharge is outlined, and the unique configuration of electrodes driven by power insulated gate bipolar transistors is put forward. Active species gain is in evidence in this system due to the effective feedforward mechanism employed and are validated by carrying out microbial inactivation studies on E. coli. Both active species gain and microbial inactivation hypotheses are verified by numerical modeling.

Published in:

IEEE Transactions on Plasma Science  (Volume:36 ,  Issue: 5 )