By Topic

Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wittmann, A. ; Inst. for Quantum Electron., ETH Zurich, Zurich ; Hugi, A. ; Gini, E. ; Hoyler, N.
more authors

A heterogeneous high-performance quantum-cascade laser gain chip comprising two bound-to-continuum active region designs emitting at 8.2 and 9.3 mum is presented. Its extrapolated gain spectrum has a full-width at half-maximum (FWHM) of 350 cm - 1. Though a broad gain bandwidth invariably results in a reduced gain cross section, devices with a high-reflection coated back facet still lase continuous-wave (CW) up to a temperature of 50 degC and demonstrates output powers in excess of 100 mW at 30degC. Such high performance was achieved by designing the waveguide in a buried heterostructure fashion and epi-down mounting on a diamond submount, resulting in a thermal resistance of only 4.8 K/W. In pulsed mode, we reached a peak output power of 1 W at room temperature. Finally, in order to prove the usability for broad-band tuning, this chip was antireflection coated on the front facet with a residual reflectivity of < 2.5 x 10-3 and used in our external cavity (EC) setup operated at room temperature. In pulsed mode, we were able to tune the gain chip over 292 cm -1, which is 25% of center frequency. In CW, we reached a coarse tuning range of 201 cm-1 (18%) and an output power in excess of 135 mW at the gain maximum at 15degC. This gain chip enabled CW room temperature EC tuning with output powers in excess of 20 mW over 172 cm -1.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:44 ,  Issue: 11 )