By Topic

Dynamical System Modulation for Robot Learning via Kinesthetic Demonstrations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hersch, M. ; Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne ; Guenter, F. ; Calinon, S. ; Billard, A.

We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to the inverse kinematics problem when dealing with a redundant manipulator. The system is validated on two experiments involving a humanoid robot: putting an object into a box and reaching for and grasping an object.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 6 )