By Topic

Hierarchical Feature-Based Classification Approach for Fast and User-Interactive SAR Image Interpretation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gemma Pons Bernad ; Ecole Centrale de Marseille, Univ. Aix-Marseille III, Marseille ; LÉonard Denise ; Philippe Refregier

The framework of this paper is focused on semiautomatic fast recognition of areas of interest for fast and user-interactive synthetic aperture radar (SAR) image interpretation for which only a unique intensity SAR image is available. The goal is to label regions into classes significant to a given application in an image, as rapidly as possible. A semiautomated ldquoroughrdquo classification is proposed. It defines the information extraction as a two-level procedure. The technique is based on a first partition image into homogeneous regions using the approach proposed by Galland Then, discrimination characteristics are determined in each homogeneous region. This allows one to automatically obtain a first segmentation of the image into semantic regions of interest. Finally, this segmentation can be easily modified by a user in a limited computational time. At this level, they are considered as ldquoobjects,rdquo to identify which typical class of ground it can be attached to. Among a large set of tested measures, we have selected the most pertinent ones for the considered SAR images. In fact, we will see that to obtain an accurate measures estimation, measures need to be estimated inside a neighborhood as homogeneously as possible. This can be achieved with a reasonable confidence in the proposed approach due to the homogeneity properties of the segmentation technique applied. In this paper, we focus on linear structures, urban structures, agricultural parcels, and forest areas extraction in SAR images.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:6 ,  Issue: 1 )