By Topic

Model-Based Detection of Heart Rate Turbulence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Solem, K. ; Signal Process. Group, Lund Univ., Lund ; Laguna, P. ; Martinez, J.P. ; Sornmo, L.

In this study, the integral pulse frequency modulation model is extended to account for the presence of ectopic beats and heart rate turbulence (HRT). Based on this model, a new statistical approach to the detection and characterization of HRT is presented. The detector structure involves a set of Karhunen-Loeve basis functions and a generalized likelihood ratio test statistic T(x) . The three most significant basis functions reflect the difference in heart rate prior to a ventricular ectopic beat (VEB) compared to after HRT, the ldquoaveragerdquo HRT, and a delayed contribution to HRT, respectively. Detector performance was studied on both simulated and ECG signals. Three different simulations were performed for the purpose of studying the influence of SNR, QRS jitter, and ECG sampling rate. The results show that the HRT test statistic T(x) performs better in all simulations than do the commonly used parameters known as turbulence onset (TO) and turbulence slope (TS). In order to attain the same performance as T(x), TS needs at least twice the amount of VEBs for averaging, and TO at least four times. The detector performance was also studied on ECGs acquired from eight patients who underwent hemodialysis treatment with the goal to discriminate between patients considered to be hypotension-resistant (HtR) and hypotension-prone (HtP). The results show that T(x) exhibits larger mean values in HtR patients than in HtP, suggesting that HRT is mostly present in HtR patients. The overlap between the two groups was larger for TO and TS than for T(x).

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 12 )