By Topic

Voltage Balancing of a 320-V, 12-F Electric Double-Layer Capacitor Bank Combined With a 10-kW Bidirectional Isolated DC--DC Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Electric double-layer capacitors (EDLCs) have attributes that feature high power density, quick charge/discharge time, long life cycle, and environmental friendliness. These attributes accord for increased appeal in employing the EDLCs as energy-storage devices in renewable energy systems, industrial applications, and hybrid electric vehicles as compared to other mature static energy-storage devices. This paper describes the construction of a 320-V, 12-F EDLC energy-storage bank connected to a bidirectional isolated dc-dc converter. Two types of EDLC bank configurations are considered with emphasis on their voltage-balancing circuits. Subsequently, this paper proposes a voltage-balancing circuit based on a center-tapped transformer, and includes its experimental verifications. It also discusses the charge-discharge and self-starting operation of the EDLC energy-storage system. During the charge-discharge operation, a low ripple current flowing in the EDLC bank is observed, leading to a theoretical analysis. The EDLC bank is also successfully charged to its rated voltage without any external dc charging circuit.

Published in:

IEEE Transactions on Power Electronics  (Volume:23 ,  Issue: 6 )