Cart (Loading....) | Create Account
Close category search window
 

Thermal Study of High-Power Nitride-Based Flip-Chip Light-Emitting Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fan, Bingfeng ; State Key Lab. of Optoelectron. Mater. & Technol., Sun Yat-sen Univ., Guangzhou ; Hao Wu ; Yu Zhao ; Xian, Yulun
more authors

This paper presents a chip-level thermal study of high-power nitride-based flip-chip (FC) light-emitting diodes (LEDs). In order to understand the thermal performance of the high-power FC LEDs thoroughly, a quantitative parametric analysis of the thermal dependence on the chip contact area, bump configuration, and bump defects was performed by finite-element model (FEM) numerical simulation and thermal infrared (IR) microscopy testing, respectively. FEM numerical simulation results proved that the optimized bump configuration design was essential to get a uniform temperature distribution in the active layer and improve the thermal performance of the FC LED. IR microscopy testing results recognized that bump defects formed in the LED chip solder processing would lead to surface hot spots around the vicinity of these bump defects, particularly under high-current working conditions. In addition, a light-emitting dark zone was also observed in the optical field for FC LEDs with bump defects. In summary, optimized LED FC bump configuration design and good bonding quality in the chip bonding process are proved to be critical for improving the thermal performance and extending the operating longevity of high-power FC LEDs.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 12 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.