By Topic

Dispersion Characteristics of a Rectangular Helix Slow-Wave Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chengfang Fu ; Sch. of Phys. Electron., Univ. of Electron. Sci. & Technol. of China, Chengdu ; Yanyu Wei ; Wenxiang Wang ; Yubin Gong

A special type of helical slow-wave structure encompassing a rectangular geometry is investigated in this paper, and the slow-wave characteristics are studied taking into account the anisotropically conducting helix. By using the electromagnetic integral equations at the boundaries, the dispersion equation and the interaction impedance of transverse antisymmetric modes in this structure are derived. Moreover, the obtained complex dispersion equation is numerically calculated. The calculation results by our theory agree well with the results obtained by the 3-D EM simulation software HFSS. The numerical results reveal that the phase velocity decreases and interaction impedance increases at higher frequencies by flattening (increasing the aspect ratio of) the rectangular helix structure. In addition, a comparison of slow-wave characteristics of this structure with a conventional round helix is made.

Published in:

IEEE Transactions on Electron Devices  (Volume:55 ,  Issue: 12 )