We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A pH Sensor Based on a Stainless Steel Electrode Electrodeposited With Iridium Oxide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Martinez, C.C.M. ; Dept. de Bioingenieria, Univ. Nac. de Tucuman, Tucuman ; Madrid, R.E. ; Felice, Carmelo J.

A simple procedure to make an iridium oxide (IrO2) electrodeposited pH sensor, that can be used in a chemical, biomedical, or materials laboratory, is presented here. Some exercises, based on this sensor, that can be used to teach important concepts in the field of biomedical, biochemical, tissue, or materials engineering, are also presented. This novel procedure is based on the electrodeposition of IrO2 on a stainless steel electrode, which uses a similar mechanism to an ion selective electrode (ISE) and senses changes in pH. The simplicity and cost effectiveness of this method facilitates the teaching of the concept of half-cell potential and the basics of sensors. This novel sensor has also been shown to outperform the classical glass pH-sensor. In this new methodology, students learn to build the electrode, to calibrate it, and to measure its sensitivity, repeatability, and time-response.

Published in:

Education, IEEE Transactions on  (Volume:52 ,  Issue: 1 )