By Topic

Smoothing transforms for wavelet approximation of piecewise smooth functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Aslam ; Department of Mathematics, Lock Haven University ; S. D. Riemenschneider ; L. Shen

Multi-resolution analysis with high vanishing moment wavelets provides a framework to efficiently approximate smooth functions. However, it is a well-known fact that wavelet approximation usually cannot achieve the same order of approximation in the vicinity of discontinuous points of functions as that in the smooth regions. Ringing artefacts in the reconstructed functions inevitably appear around discontinuous points. To reduce these artefacts, the authors propose to locally smooth piecewise smooth functions at the discontinuous points, prior to applying the wavelet transform, via a smoothing transform. The numerical experiments for one- and two-dimensional signals show the effectiveness of the proposed strategy.

Published in:

IET Image Processing  (Volume:2 ,  Issue: 5 )