By Topic

Reducing Performance Evaluation Sensitivity and Variability by Input Shaking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Tsafrir ; Dept. Comput. Sci., Hebrew Univ., Jerusalem ; K. Ouaknine ; D. G. Feitelson

Simulations sometimes lead to observed sensitivity to configuration parameters as well as inconsistent performance results. The question is then what is the true effect and what is a coincidental artifact of the evaluation. The shaking methodology answers this by executing multiple simulations under small perturbations to the input workload, and calculating the average performance result; if the effect persists we can be more confident that it is real, whereas if it disappears it was an artifact. We present several examples where the sensitivity that appears in results based on a single evaluation is eliminated or considerably reduced by the shaking methodology. While our examples come from evaluations of scheduling algorithms for supercomputers, we believe the method has wider applicability.

Published in:

2007 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

Date of Conference:

24-26 Oct. 2007