Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Instruction-Based Online Periodic Self-Testing of Microprocessors with Floating-Point Units

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xenoulis, G. ; Dept. of Inf., Univ. of Piraeus, Piraeus ; Gizopoulos, D. ; Psarakis, M. ; Paschalis, A.

Online periodic testing of microprocessors is a valuable means to increase the reliability of a low-cost system, when neither hardware nor time redundant protection schemes can be applied. This is particularly valid for floating-point (FP) units, which are becoming more common in embedded systems and are usually protected from operational faults through costly hardware redundant approaches. In this paper, we present scalable instruction-based self-test program development for both single and double precision FP units considering different instruction sets (MIPS, PowerPC, and Alpha), different microprocessor architectures (32/64-bit architectures) and different memory configurations. Moreover, we introduce bit-level manipulation instruction sequences that are essential for the development of FP unit's self-test programs. We developed self-test programs for single and double precision FP units on 32-bit and 64-bit microprocessor architectures and evaluated them with respect to the requirements of low-cost online periodic self-testing: fault coverage, memory footprint, execution time, and power consumption, assuming different memory hierarchy configurations. Our comprehensive experimental evaluations reveal that the instruction set architecture plays a significant role in the development of self-test programs. Additionally, we suggest the most suitable self-test program development approach when memory footprint or low power consumption is of paramount importance.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:6 ,  Issue: 2 )