By Topic

A Novel Feature Selection Methodology for Automated Inspection Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hugo C. Garcia ; L3, Electro-Optical Systems, Tempe ; Jesus Rene Villalobos ; Rong Pan ; George C. Runger

This paper proposes a new feature selection methodology. The methodology is based on the stepwise variable selection procedure, but, instead of using the traditional discriminant metrics such as Wilks' Lambda, it uses an estimation of the misclassification error as the figure of merit to evaluate the introduction of new features. The expected misclassification error rate (MER) is obtained by using the densities of a constructed function of random variables, which is the stochastic representation of the conditional distribution of the quadratic discriminant function estimate. The application of the proposed methodology results in significant savings of computational time in the estimation of classification error over the traditional simulation and cross-validation methods. One of the main advantages of the proposed method is that it provides a direct estimation of the expected misclassification error at the time of feature selection, which provides an immediate assessment of the benefits of introducing an additional feature into an inspection/classification algorithm.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 7 )