By Topic

A Taxonomy of Similarity Mechanisms for Case-Based Reasoning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Padraig Cunningham ; University College Dublin, Dublin

Assessing the similarity between cases is a key aspect of the retrieval phase in case-based reasoning (CBR). In most CBR work, similarity is assessed based on feature value descriptions of cases using similarity metrics, which use these feature values. In fact, it might be said that this notion of a feature value representation is a defining part of the CBR worldview-it underpins the idea of a problem space with cases located relative to each other in this space. Recently, a variety of similarity mechanisms have emerged that are not founded on this feature space idea. Some of these new similarity mechanisms have emerged in CBR research and some have arisen in other areas of data analysis. In fact, research on kernel-based learning is a rich source of novel similarity representations because of the emphasis on encoding domain knowledge in the kernel function. In this paper, we present a taxonomy that organizes these new similarity mechanisms and more established similarity mechanisms in a coherent framework.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:21 ,  Issue: 11 )