By Topic

Hill Climbing-Based Decentralized Job Scheduling on Computational Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qingjiang Wang ; Dept. of Comput. Sci., Ocean Univ. of China, Qingdao ; Yun Gao ; Peishun Liu

De-centralized job scheduling is implemented by job migrations between neighboring grid nodes. To optimize node selection of a new-submitted job, the job may be migrated many times. Here, the hill climbing method is used to determine the migration route. Experiments simulate de-centralized job scheduling, including node adjacencies, local scheduling of grid nodes, and grid workload. Compared with k-distributed and auction methods, hill climbing-based scheduling usually can enhance processor utilization, and can reduce bounded slowdown

Published in:

Computer and Computational Sciences, 2006. IMSCCS '06. First International Multi-Symposiums on  (Volume:1 )

Date of Conference:

20-24 June 2006