By Topic

The Contract Risk Recognition of Construction Project Based on Rough Set Theory and Fuzzy Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zehong Li ; Sch. of Bus. Adm., North China Electr. Power Univ., Baoding ; Weibo Liang

This paper is to introduce a model. In the analysis of contract risk recognition, redundant variables in the samples spoil the performance of the SVM classifier and reduce the recognition accuracy. On the other hand, we usually canpsilat label one risk as absolutely good, or absolutely bad. In order to solve the problems mentioned above, this paper used rough sets (RS) as a preprocessor of SVM to select a subset of input variables and employ fuzzy support vector machine (FSVM), proposed in previous papers, to treat every sample as both positive and negative classes, but with different memberships. Additionally, the proposed RS-FSVM with membership based on affinity is tested on two different datasets. Then we compared the accuracies of proposed RS-FSVM model with other three models. Especially, in application of the proposed method, training sets are selected by increasing proportion. Experimental results showed that the RS-SVM model performed the best recognition accuracy and generalization, implying that the hybrid of RS with fuzzy SVM model can serve as a promising alternative for recognizing contract risk.

Published in:

Risk Management & Engineering Management, 2008. ICRMEM '08. International Conference on

Date of Conference:

4-6 Nov. 2008