Cart (Loading....) | Create Account
Close category search window
 

Schottky Barrier N-Type Thin Film Transistors With Polycrystalline Silicon Channel and Er-Silicided Metallic Junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shin, Jin-Wook ; Dept. of Electron. Mater. Eng., Kwangwoon Univ., Seoul ; Chel-Jong Choi ; Jang, Moongyu ; Won-Ju Cho

N-type Schottky barrier thin film transistors (SB-TFTs) with polycrystalline silicon channel and metallic junctions were fabricated by using Er silicidation, and electrical structural properties were compared to conventional TFTs with phosphorous-doped source/drain regions. The performances of SB-TFTs are better than that of the conventional TFTs. A forming gas annealing process leads to a great improvement in the characteristics of both devices. In particular, excellent electrical characteristics were obtained from the forming gas annealed SB-TFTs: the subthreshold swing of 180 mV/dec, the drive current of 1.47 times 10-5 A, and the on/off current ratio of 5 times 106.

Published in:

Electron Device Letters, IEEE  (Volume:29 ,  Issue: 12 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.