By Topic

Fault Detection in Multivariate Signals With Applications to Gas Turbines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bassily, H. ; Dept. of Mech. Eng., Clemson Univ., Clemson, SC ; Lund, R. ; Wagner, J.

This paper proposes a fault detection method for multivariate signals. The method assesses whether or not the multivariate autocovariance functions of two independently sampled system signals coincide. If the first signal is known to be sampled from a well-functioning system, then rejection of signal equality is tantamount to concluding that the second signal is sampled from a faulty system. The proposed method is based on the asymptotic properties of the periodogram of multivariate stationary time series and is nonparametric in nature; in particular, there is no need to model the signals under study, an often arduous task. Several natural and synthetic faults were introduced in a Solar Turbines Mercury 50 4.5 MW gas turbine and the resulting compressor delivery pressure and generated electrical power were analyzed. The proposed method capably detected all faults.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 3 )