By Topic

Robot-to-Robot Relative Pose Estimation From Range Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhou, X.S. ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN ; Roumeliotis, S.I.

In this paper, we address the problem of determining the 2-D relative pose of pairs of communicating robots from (1) robot-to-robot distance measurements and (2) displacement estimates expressed in each robot's reference frame. Specifically, we prove that for nonsingular configurations, the minimum number of distance measurements required for determining all six possible solutions for the 3 degree-of-freedom (3-DOF) robot-to-robot transformation is 3. Additionally, we show that given four distance measurements, the maximum number of solutions is 4, while five distance measurements are sufficient for uniquely determining the robot-to-robot transformation. Furthermore, we present an efficient algorithm for computing the unique solution in closed form and describe an iterative least-squares process for improving its accuracy. Finally, we derive necessary and sufficient observability conditions based on Lie derivatives and evaluate the performance of the proposed estimation algorithms both in simulation and via experiments.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 6 )