Cart (Loading....) | Create Account
Close category search window

A 1-MHz High-Efficiency 12-V Buck Voltage Regulator With a New Current-Source Gate Driver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhiliang Zhang ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON ; Eberle, W. ; Ping Lin ; Yan-Fei Liu
more authors

This paper proposes a new current-source gate drive circuit for a synchronous buck converter. The proposed driver can drive two MOSFETs independently with different drive currents for optimal design. For the control MOSFET, the optimal design involves a tradeoff between switching loss reduction and drive circuit loss; while for the synchronous-rectifier MOSFET, the optimal design involves a tradeoff between body diode conduction loss and drive circuit loss. Furthermore, the new drive circuit can achieve: 1) significant switching loss reduction; 2) gate energy recovery and high gate drive voltage to reduce R DS(ON) conduction losses; 3) reduced conduction loss and reverse recovery loss of the body diode; and 4) zero-voltage switching of all the drive switches. The improved driver using integrated inductors is presented with multiphase buck voltage regulators (VRs) to reduce the number of magnetic cores and the core loss. The experimental results prove that a significant efficiency improvement has been achieved. At 1.5-V output, the new driver improves the efficiency from 84% using a conventional driver to 87.3% at 20 A, and at 30 A, from 79.4% to 82.8%. Overall, the new driver approach is attractive from the standpoints of both performance and cost-effectiveness.

Published in:

Power Electronics, IEEE Transactions on  (Volume:23 ,  Issue: 6 )

Date of Publication:

Nov. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.