By Topic

An Intelligent ISFET Sensory System With Temperature and Drift Compensation for Long-Term Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, D.Y. ; Broadcom, Singapore ; Chan, P.K.

This paper presents a new intelligent ISFET sensory system dedicated to a precision pH sensory function, as well as a long-term monitoring capability without being jeopardized by temperature and drift fluctuations in the water-quality monitoring environment. It includes the novel compensation technique for counteracting a simultaneous change of temperature and drift, the design of the sensory system incorporating hardware and software co-design for enhancing the performance stability of a standard ISFET device and a new programmable current source with reduced dynamic current error for a dedicated temperature compensation process. The proposed ISFET sensory system, with about a 0.01 pH resolution in system design at a 3.3 V supply, has been validated by the experiments, exhibiting a maximum accuracy error of 0.02 pH at 23degC and 0.05 pH at 40degC with dual compensation. The compensation results show a maximum time drift of 0.003 pH/hour (0.166 mV/hour) at 23C and an average temperature drift of 0.00049 pH/hour/C (0.0245 mV/hour/C ) for a reference temperature increase from 23 C to 40degC, with the value of the pH solution ranging from 4 to 9 in six-hour measurements. These measured results outperform those of the reported drift reduction techniques, suggesting that the ISFET sensory system using novel compensation can provide significant immunity against temperature change, time drift, and temperature drift, which are favorable towards robust measurements in environmental monitoring applications.

Published in:

Sensors Journal, IEEE  (Volume:8 ,  Issue: 12 )