By Topic

Privacy-preserving protocols for perceptron learning algorithm in neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saeed Samet ; School of Information Technology and Engineering (SITE), University of Ottawa, ON, Canada K1N 6N5 ; Ali Miri

Neural networks have become increasingly important in areas such as medical diagnosis, bio-informatics, intrusion detection, and homeland security. In most of these applications, one major issue is preserving privacy of individualpsilas private information and sensitive data. In this paper, we propose two secure protocols for perceptron learning algorithm when input data is horizontally and vertically partitioned among the parties. These protocols can be applied in both linearly separable and non-separable datasets, while not only data belonging to each party remains private, but the final learning model is also securely shared among those parties. Parties then can jointly and securely apply the constructed model to predict the output corresponding to their target data. Also, these protocols can be used incrementally, i.e. they process new coming data, adjusting the previously constructed network.

Published in:

2008 4th International IEEE Conference Intelligent Systems  (Volume:2 )

Date of Conference:

6-8 Sept. 2008