By Topic

On the implementation of ant colony optimization scheme for improved channel allocation in wireless communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. M. Papazoglou ; University of Portsmouth/ECE Department, Portsmouth, UK and Lamia Institute of Technology, Greece ; D. A. Karras ; R. C. Papademetriou

Channel allocation in wireless communication systems is one of the fundamental issues. The corresponding allocation schemes can not be static due to the dynamically changing traffic conditions and network performance. Thus, more sophisticated strategies adapted to current network conditions must be investigated and applied. Recently, various approaches have been proposed for channel allocation based on intelligent techniques such as multi-agent technology and genetic algorithms. These approaches constitute heuristic solutions to resource management problem. On the other hand, the ant colony optimization approach has been proposed for solving optimization problems but this approach has not been proposed so far for solving the channel allocation problem in wireless communication systems. In this paper, a comprehensive heuristic approach for solving the channel allocation problem based on intelligent techniques such as multi-agents and ant colony optimization is proposed. Moreover, important implementation issues such as thread execution sequence are also presented. Finally, the simulation results show the performance improvement of the proposed ant colony optimization algorithm as well as the multi-agent modeling approach.

Published in:

2008 4th International IEEE Conference Intelligent Systems  (Volume:1 )

Date of Conference:

6-8 Sept. 2008