Cart (Loading....) | Create Account
Close category search window
 

Latent-Space Variational Bayes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jaemo Sung ; Dept. of Comput. Sci. & Eng., Pohang Univ. of Sci. & Technol., Pohang ; Ghahramani, Z. ; Sung-Yang Bang

Variational Bayesian expectation-maximization (VBEM), an approximate inference method for probabilistic models based on factorizing over latent variables and model parameters, has been a standard technique for practical Bayesian inference. In this paper, we introduce a more general approximate inference framework for conjugate-exponential family models, which we call latent-space variational Bayes (LSVB). In this approach, we integrate out model parameters in an exact way, leaving only the latent variables. It can be shown that the LSVB approach gives better estimates of the model evidence as well as the distribution over latent variables than the VBEM approach, but in practice, the distribution over latent variables has to be approximated. As a practical implementation, we present a first-order LSVB (FoLSVB) algorithm to approximate this distribution over latent variables. From this approximate distribution, one can estimate the model evidence and the posterior over model parameters. The FoLSVB algorithm is directly comparable to the VBEM algorithm and has the same computational complexity. We discuss how LSVB generalizes the recently proposed collapsed variational methods [20] to general conjugate-exponential families. Examples based on mixtures of Gaussians and mixtures of Bernoullis with synthetic and real-world data sets are used to illustrate some advantages of our method over VBEM.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 12 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.