By Topic

Nonthreshold-Based Event Detection for 3D Environment Monitoring in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mo Li ; Hong Kong University of Science and Technology, Hong Kong ; Yunhao Liu ; Lei Chen

Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values, and thus are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds, but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a non-threshold based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatio-temporal data patterns. Finally, we conduct trace driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:20 ,  Issue: 12 )