By Topic

Passivity-Preserving Model Reduction Using Dominant Spectral-Zero Interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Roxana Ionutiu ; Dept. of Electr. & Comput. Eng., William Marsh Rice Univ., Houston, TX ; Joost Rommes ; Athanasios C. Antoulas

In this paper, the dominant spectral-zero method (dominant SZM) is presented, a new passivity-preserving model-reduction method for circuit simulation. Passivity is guaranteed via spectral-zero interpolation, and a dominance criterion is proposed for selecting spectral zeros. Dominant SZM is implemented as an iterative eigenvalue-approximation problem using the subspace-accelerated dominant-pole algorithm. Passive circuits are reduced automatically irrespective of how the original system equations are formulated (e.g., circuit models containing controlled sources or susceptance elements). Dominant SZM gives comparable and often more accurate reduced models than known techniques such as PRIMA, modal approximation, or positive real balanced truncation.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:27 ,  Issue: 12 )